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ABSTRACT

We discuss the nonlinear eigenvalue problem

u” + Af(x,u) = 0 -1<x<1 220
(®»)
u'(=1) = u'(+1) = 0, 0 g ulx) g1
where
f(x,u) = u(1 - u){u - a(x)]
and

a(x) -<% {1 - ex(x) + h] €20, henr

with r(-x) = -r(x) and r' 2 0.

Por € =h = 0 the solution of Problem P is well known, and every solution, except
u=0 and u= 1 is unstable with respect to the corresponding parabolic problem.

\ We show how the branch of increasing solutions changes as € becomes positive, and
¥ acquires a bifurcation point ()A,u) beyond which this branch becomes stable. If h
i becomes nonzero as well, this bifurcation point .3 shown to break up.

As an illustration we consider an example in which the branch of increasing solutions
b can be computed. Here

-a 0 < x < a(x)

f(x,u) =
t-u a(x) <u g1

where a(x) is given above.
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SIGNIFICANCE AND EXPLANATION

Consider a population, consisting of three genotypes: AA, Aa and aa,
which tend to disperse through a habjitat Q and possess different survival
fitnesses. let u(x,t) denote the fraction of allele A amongst the total
number of alleles in the population at a point x in the habitat, at time
t. Then, according to a model due to FPisher and Haldane, the evolution of
u is described by the nonlinear diffusion equation

u, = DAu + f£(x,u) x e N, t>0

in which D is a pogitive constant, measuring the rate of dispersal and f a
function determined by the relative fitness of the genotypes. If the fitness
of the heterozygote Aa is lower than that of either of the homozygotes,
then £ is of the form given in the Abstract. When Q = (-1,1) and we
assume no-flux boundary conditions we arrive at Problem P, with A = 1/D,

In this paper we shall assume fx 2 0, and study the set of
nondecreasing equilibrium solutions, and their stability properties. 1In
particular, it is shown that if an equilibrium solution is decreasing on some
interval, then it must necessarily be unstable.

Problem P contains three parameters, A: measuring the relative
importance of dispersal and selection, €: measuring the gradients in the
selection pressure fx and h: measuring the departure from the symmetry

property
(*) £(-x,1 = u) = ~f(x,u) xe (-1,1), uelo1] .

We find that if (*) is satisfied (h = 0), and fx %2 0, there exists
a branch of increasing solutions ¢(x,A) such that

$(-x,2) = 1 = $(x,]) xe [-1,1 ,

which is unstable for ) small and stable for A large, the exchange of
stability being achieved at a bifurcation point on this branch. This
singularity disappears when h becomes nonzero, and the symmetry relation is
no longer valid. Biologically, this means that for small dispersal rates,
stable equilibrium solutions exist, which mirror the selective advantages in
the habitat.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ON A NONLTNEAR EIGENVALUE PROBLEM

OCCURRING IN POPULATION GENETICS

* ] %k
Ph. Clément and L.A. Peletier

1. INTRODUCTION

In a previous paper [8] the second author considered the following

nonlinear eigenvalue problem

{ u" + Af(x,u) = 0 “1<x<1,220.

(P)

u'(-1) =u'(1) =0
where
(1.1) f(x,u) = u(i-u)(u-a(x))

and a . satisfies

Al a € C1 ([-1,1])
A2 0<a(x) <1 for -t S xs1.
This problem arises in population genetics as a simple diffusion model for the

propagation of genctic material in a population, see [5,6). The solutions of (P)

are stationary solutions of the orohlem

x
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(D)

{ u =u_ + Af (x,u) “-t<x<t,t>0

ux(t.-l) - ux(t,1) = Q t20.

Since u represents a fraction of alleles in the pOpulation,‘Qe are only inter~-
ested in solutions u taking values in [0,1) ; u = 0 and u = 1 are (trivial)
solutions of (P), and they are both asymptotically stable . As a consequence of
the implicig function theorem one easily proves that the branches {(l,O)IAGRf}
and {(A,1)IA€Bf} do not ‘have a bifurcation point in R’ x c([-1,1)) where
C([-1,11) denotes the space of continuous functions on [-1,1] equipped with
the supremum norm.

When a'(x) =0, x € [-1,1] , the trivial solutions are the only stable

ones [1]. | .

When a'(x) <0, x € [-1,1] , it was proved in [7,Theorem 4} and [S] that for
sufficiently large values of X , there does exist at least one non—tri§131 N
solution which is stable. (We prove in Appendix B that stable solutions have
to be increasing). '

In this paper, we are interested in the question as to how these stable
solutions emerge when a(x) changes from a constant to a non-constant function.

To be specific we shall write

(1.2) a(x) = i(l-er(x)+h) s, €,hER

where r(-x) = -r(x) , x € [-1,1] .

In the example given in [8], where h =0, r(x) --1 on (0,1]* and ¢ € [0,1) ,
it was shown that the stable solutions are part of continuum in 1€3<c([-1,1])
which extends all the way back to A = 0 , and that (\,u) converges to (0,})
as A + 0 . In addition it was shown in [8], that, under the assumptions Atl, A2,

for A small, there exists a unique curve C of nontrivial unstable solutions

* For this choice of r the function a does not satisfy the condition A1, but
this has no effect on the result.




u()) , bifurcating from (0,a) where

. +1
(1.3) a =} I a(x)dx .
-1

Thus, in the example considered above, in which f hag the symmetry

property:
y (1.4) f(~x,1-u) = ~f(x,u) x € [-1,1]1 , u € [0,1] ,
? (that is f is antisymmetric with respect to the point (0,4) in the
. . :
(x,u)-plane), the branch of nontrivial solutions C( extends to infinity and

eventually the solutions of this branch become stable. As a consequence it
was shown that C. contains a bifurcation point (A,u) .

In this paper we shall extend these results to more general functioms
r , and discuss the dependence of (X,u) on € .

If h becomes non zero and f no longer has the symmetry property (1.4),
we prove some partial results which suggest that the continuum C breaks up at
the point (X,u) . We conjecture on the basis of these results that when f
fails to have the symmetry property (1.4), then C does not contdin any stable

solution.

We conclude this paper with an cexample of a different type of function £ :

-u <0 8 u < a(x)
f(x,u) = {

1=u a{x) cust,

TSR T Nl TR, N
-

where a(x) is given by (1.2) and r(x) = x . In this example the branch C

PR

can be computed explicitely, both when h is zero and when h is not zero.

We gratefully acknowledge S. Hastings for suggesting this example.

| -3-




2. THE CONTINUUM C

+1 .
Define the function J(u) = f f(x,u)dx , where f is given by (1.1).
: -1
Then

(2.1) J(u) = () e u€ {0,0.1}

where o is.defined ir; (1.3). Recall that by A2, 0 < a < 1 . In this section we
shall show that from the point (0,a) emanates a branch of nontrivial solutions of
(P). We shall denote it by C. By a solution of Problem (P) we shall mean a pair
(A,u) € R x Cz([-1,1.]), which satisfies (P), where Czl([—1,1]) is the space of twice

continuously differentiable functions on [~1,1] equipped with the usual norm.

THEOREM 1. Suppose a satisfies Al and A2. Then there exists a maximal

connected set of nontrivial eolutione C in R € cz([-I,I]) » whose progjection

‘ on R s unbounded, with the properties:

sl (1) lim(A,u) = (0,0) in R xc2([-1,1]) .
(A,u)cC

N A+0 . ,
" (ii) There exists Ao > O such that for ) € (0,7«0) there exists one and

only one nontrivial solution (A\,u) , and (A,u) belongs to C .
(iii) If (A\,u) €C, then 0 <cu(x) <1, x € [~1,1]

(iv) If a satisfies in addition

AN

L4

A3 a'(x) s o x € [-1,1) ,

e

a not a constant, then (X,u) ©C implies u'(x) >0, x € (-1,1) .

(u 28 a "cline”).

T e

4—. REMARK. For A\ € (O,AU) » the function A -» u()) € Cz([-l,ll) is analytic.
St

- St e . ' . B =Tt e .
Y A S - P T AP N, NP, P . § L -3 ad



PROOF. To prove (i) and (ii) we shall rewrite Problem (P) such that we can.

apply Theorem A from the Appendix. Observe that if (X,u) 1is a solution
+1

:i of Problem (f) and X > 0, then f f(x,u(x))dx = 0. Therefore solutions

~1
.; - of Problem (P) with A > 0 are also solutions of Problem (P1) and conversely:
+1

j -u" = A{f(x,u)-4 f f (x,u(x))dx}

-1

1) “u'(x1) =0
+1
f f(x,u(x))dx = 0 .
-1
+1
Let k be such that if g € C([-1,1]) with [ g(x)dx =0 and
’ +1 -1 +1

u(x) := fk(x,y)g(y)dy » then u satisfies (i) f u(x)dx = 0 and
-1 : -1 +1
(ii) -u" =g ,x € (-1,+41) and u'(21) =0 . Let B denote } 7] u(x)dx
-1
and vy =B - a , where o is defined in (1.3), and v = u -~ B , Then we can

rewrite Problem (P1) as

-
v(x) = X [ kx,y)f(y,v(y)+a+y)dy
(P2) { + ~1
f f(x,v(x)+a+y)dx = 0 .

-1

Now we define the Banach space
+1

E := {v€C([-1,1])| Jv(x)dx=0} x R
-1

equipped with the norm [[(vyy)df = max  Iv(x)| + |yl , and the map
xef-1,1]

F:= RXxE+>E by

+1

( v=A [ kG, EQy,v(y)+aty)dy
rQv,y)) = 14 !

§ o E(x,v(x)vaty)dx .

-1

<

<
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i Plainly Problem (P2) can be rewritten as
(P3) F(A3(v,v)) =0 , A E R, (v,y) €EE .

We are now in a position to apply Theorem A of the Appendix and we shall prove
_ that the conditions a) to f) are all satisfied. a) follows from the definition
of F and o' . b), ¢) and £f) with F analyti.c are standard. .To prove d),
one. computes the partial Fréchet derivative of F with respect to (v,Y)

at (0,(0,0)) .

\'4
Flo,y) 030,00 F,9) = { [ £ o) 90+91ex

+1
where (¥,9) € E . Since f fu(x,u)dx = 2a(1-a) # 0 it follows that
-1
sz ) (0,(0,0)) € Isom(E,E) . It remains to prove e). First observe that as a
]

consequence of (2.1), F(0,(v,y)) = 0 if and only if v = 0 and

Y € {~a,0,1-a} . Then one observes that the component of solutions in R x E

which contains (0,-a) (resp. (0,1-a)) is exactly {(A,-a))ACR} (resp.

{(A,1-a) IA€ER} since there is no bifurcation on these lines. Thus the component ¥
of solutions in | R xE which contains (0,0) does not meet {0} x E , and
condition e) is satisfied. It follows from Theorem A that Problem (P3) possess

a maximal connected set of solutions in R’ XE which is unbounded in R' x E

and such that

lim (A, (v,v)) = (0,(0,0)) .
(A, (v,v))ED .
Av0

It is easy to verify that v € Cz([-i,l]) . Next we define

C := {(A.u)ER+XCZ([-1,1])Iu-v+y+a with (X,(v,y))ED} . C 1is an unbounded

maximal connected set in R’ » c([-1,1]) ; moreover (A,u) € ¢ are nontrivial




;
§
:
i

“ -

solutions of (P). Thus since the R xC({-1,1]) and the Rx Cz([—I.I])
topology are the same on the set of solutions of (P), C is a maximal connected
set in R x CZ([-l,I]) » Such that lim(A,u) = (0,a) in Rx Cz([-l,l]) .

(\,u)ecC
A0

This proves part (i) of Theorem 1.

Part (ii1) follows from f£) of Theorem A . Next we prove that (A,u) € C implies

0< u(x) <1, x€ [-1,1] . It is sufficient to prove max Ju(x)-4[ < 4
x€[-1,1)
for (A,u) € C . First observe that for A small, max lu(x)-4l < § ,
. x€[~1,1]
with (A,u) € C . Assume that for some (A,u) € C , max lu(x)-41 = 4 .
' ' x€[-1,1]

From the boundary conditioms, it follows that there exists £ € [-1,1] such

that u'(E) =0, u(f) =0 or 1 .Butthe function u(x) 20 or =1 would

be a solution of the initial value problem

~v" = Af(x,v)
(IP) § v(&) = u(g)
v'(€) =0

as well as the function u which is not constant. This contradicts the unique-
ness of the initial value problem (IP). We have then that (\,u) € C implies

max lu(x)-4] = § . One concludes by observing that the function

x€ [~1,1]
(Asu) €C + max Ju(x)-il is continuous from R x C([-1,1}) into R
and that C 1is connected in R x¢([-1,1]) . This proves part (iii).

As a consequence We prove next that Proj R"‘C is unbounded. We have

0~ vix) 4 y+a < 1 for alt (A,(v,y)) € D . Since f“ v(x)dx = 0 , we
. -1

N

algo have O <y +a <1, for all (A,(v.y))€ED and thus sup Hvydll € =,

(O, (v,v))ED
hence Projn., D= ProjR+ . is  pounded, since D is unbounded in R*x E .

e M e T S e
PR T P et . .
Vg TR TR TR N NP RPN PR P ~ B . . R . .
ol dhetefbonelotdhenfiondhl gt d o f 22 o a0 ol o - I ~ . .
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: uD(X,u) # 0 when (A,u) € C . Indeed w = u' satisfies:

Finally we prove (iv). For (X ,u) % C , we define uD(X,u) to be the

principal eigenvalue of the problem

{ ~h" - Xfu(.,u)h = yh “-1<x <1

h(-1) = h(+1) = 0 .

For (A\,u) € C and X small it is easy to see that uD(X,u) >0 . But

" = Af W = AE_ = Au(l-u)(-a') 2 0
(2.2) { ¢ *
w(-1) =w(1) = 0

+1
Suppose uD(A,u) = 0 . Then f thdx should be zero where h denotes
-1

the principal eigenfunction chosen positive and normalized by max h(x) = 1 .
x€[-1,1]
Since a 1is not a constant, this is impossible. As in part (iii) we conclude

that uD(A,u) >0 on C by observing that is a continuous function of

1
(A,u) and C 1is connected. Since the operator in the left~hand side of (2.2)
is coercive, and the right-hand side is nonnegative (not identically zero),

then u'(x) = w(x) >0, x € (-1,1) . This completes the proof of Theorem t.

3. THE SYMMETRIC CASE

Throughout this section we set h = 0 . Thus

a(x) = 4(1-er(x)) ,

and we assume that r satisfies

H1 r(-x) = -r(x) x € [-1,1]

H2 r'(x) 20 on [-t,1] and r'(0) > 0 .

"‘ PR WS Sy W o A VDY S NP RPN N o o - K-S Wy




Thus & = 4 , and by Theorem ! the continuum C ‘'cmanates" from (0,}) .

For convenience we define v = 2u - 1 . Then Problem (P) is equivalent with

J v'"' + Ag(x,v) =0 -1 <x <1
@) .
Fvie)y =via) =0,

where
g(x,v) = i(l-vz)[V+er(x)] .

Suppose ¢* is a solution of the problem

(P")
v(0) =0 «v'(1) =0

{ v o+ rglx,v) = 0 0 xx<1

Then due to the sysmmetry property of r given in Hi1, the function

{ -¢*(~-x) -1$sx<0

9*(x) 0sSxs i

is a solution of Problem (P'), and ¢(x) = i(1+$lx)) is a solution of Problem

(P). Since the function g has the property
glx,v) > gv(x,v)v 0<xst,0svst

the following facts about Problem (P") are well-known:

oAl SR S L SR PN S Sy AP S WAL L. UL S S

R S . S N S S
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PROPOSITION 2. Let r satisfy hypothesis Kl and H2. Then

(i) for each X > 0, Problem (P") has a unique positive solution ¢é*(X) ;
(ii) ¢*()) <ie increasing and concave;

(iii) the map I ¢*(A): R'=+ c2([o,1]) is analytic

(iv) 0 s xi < A\, implies ¢*(x|)(x) < ¢*(A2)(x) for x € (0,1)

2

W) o*(A) »0 as A+0 in &2([0,1)).

(i) lim ¢*()(x) = 1 for each x € (0,1 .
A+ .

They are an easy consequence of the fact that the principal eigenvalue

u‘(x) of the linearized problem

{ -h" - Agv(x,Q*(x))h = ph 0 <x <1

h(0) = h'(1) = 0
is positive for all A > C .

PROPOSITION 3. Let r, and r, satisfy hypothesis H1, H2 and let L and

2] be the solutions of Problem (P"), corresponding to r, and t, . Suppose

r, >r, then ¢?(x) > ¢5(x) for 0 <xs 1.,

PROOF. Write fi(x,u) = u(1-u)(u—ai(x)) where a, = i(l—eri) i=1,2, . Then

¢1" + 1f§.,¢f) = Afz(.,¢f) - 1f1(.,¢f) =

= iek¢‘;(1-¢’;)(r2-r') $0. (£0).

-10-
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Hence ¢? is a supersolution of the problem
v' + ) fz(.,v) =0
{ v() =0 v'(1) =0 .

Since v(x) = 0 is a subsolution it follows that there exists a solution w
such that 0 S w ¢ ¢? , and because neither 0 nor ¢? are solutions,
0 < w(x) < ¢?(x) for 0 < x s 1 . Because Problem (P") has only one solution

by Proposition 2, w = ¢3 and hence ¢§(x) < ¢?(x) for 0 <xs 1.

COROLLARY. Let r satisfy H! and H2 and let X € R be fixed. Denote the solution

of Problem (P") by ¢*(e) . Then €, 2 € implies ¢*(€1) 2 ¢*(ez) .
We now return to Problem (P). We can deduce from Proposition 2 that

C, := {(x,¢(x)) Ix>o}
is an analytic curve of solutions with the symmetry property

(3.1 dQ)(=x) = 1 = $(A)(x)

such that

¢(A) +} as A+ 0 in Cz([-1,1]) ,

[l aut autah aud Sy I A At s
AR o .'T S AR M R
R 7 AR I
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1 if x € (0,1)

e $(rA)(x) -+ { as A+ o,
0 if x £ (-1,0)

This means, in view of Theorem 1, that Cs is the subcontinuum of C consisting
of the solutions with the symmetry property (3.1). Observe that all increasing
solutions satisfying (3.1) belong to Cs .

In the following theorem we investigate the sign of the eigenvalue vk(l)

of the linearized problem

-h" - A£ (.,6(0) h = y(MDh 1 <x <1
(EV) { u
h'(-1) = n'(1) = 0

where (A,9(2)) % Cs . If they are all positive for some (X,¢(})) € Cs s We

know that ¢(\) 1is asymptotically stable [3] and if one of them is negative

! that ¢()) is unstable.

EE Let the eigenvalues v be ordered so that Vy € vy < Vg € e e Then due to
9 the symmetry of fu » Vop = Wy for h=1,2,... . We already know that

g u1(k) >0 for all X > 0 . Hence Ve B Vy R Hg 0 for all k 2 2 . Thus it

. remains to find the sign of vy -

THEOREM 4. Let (A,¢(Q)) € Cs . Then there exists )\ amdlz (05k1<xz<w)

1

TR

such that

(1) 0<1 < A; implies v,(x) <0

(ii) X, < A <o implies vi(A) >0,

where v (3) denotes the principal eigenvalue of the Problom (EV).

PROOF. (i) This part was proved in [6].

~12-




.This follows from the fact that if «r

(i)

(ii) *‘We begin with the observation that if r i=1,2 satisfy Hi, H2 and-

D, @

on (0,t] , then the principal cigenvalues vf')(x) and v

satisfy the inequality:

(3.2) WP > v () foraul a0

M > r(z)' then by Proposition 3,

¢(‘)(x) > ¢(2)(x) for all x € (0,1] , and hence as follows from elementary
computation fﬁl)(x3¢(1)(x))< fiz)(x,¢(2)(x)) for all x €[-1,0) v (o0,1] .

The variational characterization of the principal eigenvalue of Problem EV

now gives the~inequa1ity (3.2). In view of the assumptions on r , there exists

a constant 6§ > 0 such that
2
xr(x) 26x for -1 sxg 1.

It follows from the above observation that it is sufficient to prove part (ii)
for the function r(x) = x ,-1 S x S 1 , where the constant & has been
absorbed in the factor ¢ .

Let h, be the principal eigenfunction of Problem EV normalized so

1
that h, >0 on [-1,1] and max h, = 1 . Then
1 1
[_1"1]
= - | L -

If we multiply this equation by ¢'()\) and integrate over (-1,1) we obtain,

using the boundary conditions for h, and ¢, and dividing by A :

1

13-
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- +1
3 (3.4) v, ) I ¢'h dx = -f(..¢(x)) h, |H

-1 -1

+ I fx(-.om) hdx= -zf(t.mm)) hy (1) +
-1

+1
+€ I ¢(X)(1-¢{l))h1dx .
0

Here we have also used the symmetry properties of f,¢ and h . Integrating

(3.3) over (-1,1) and dividing by A we obtain
‘. + 1
g -1
2 A vl(k) J hldx = -2 J fu(-,¢(l)) h, dx
) -1 0 '
1 1
= =2 J ¢(X)(1-¢(k))h1dx + 2 I (2¢(A)-1)(¢(X)-a)h1dx .
0 0
If we multiply this equality by g and add it to (3.4) we obtain

+1
! v1(l) J. (¢'+ie)h1dx = -2£(1.¢(X)(1))h1(1) +
-1

+ €

(2¢(A)-1>(¢(A)-a)h1dx .

©Q ey w

We assert that h,(x) 2 h1(1) for 0 s x s 1 . Accepting this for

moment we find that

RS S0

+1 :
1-1 v’(X) J (¢'+§t)h1dx 2 h1(1) [~2f(1.¢(k)(1)) +
-1

s :J) <2¢(x)-1)(¢(x)-a)dx] .
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By Proposition 2, ¢(A)(x) + 1 as \ -+ « uniformly on any interval [g,1]

with 0 < £ < 1 . Hence

! 1

lim '{-Zf(l;¢(l)(l)\+e J (2¢(l)-l)(¢(l)-a)dx}‘-

A @ 0

1 1
=g [ (1-a)dx -g(tﬂ: I xdx) = -;-(I+_§)> 0.
0

o‘

Because the coefficient of v1(x) is positive for all X > 0 , there exists

a A, >0 such that v1(k) >0 for all 2 > Az .

2

It remains to prove that h(x) 2 h(1) for 0 s x £ 1 . One proof was

given in [8]. Here we give another proof. Observe that 2z = h; is a solution of

the problem:

~2" - Af z~-v,z=2f h
{ u 1 Xu 1

z(0) = z(1) =0

in which £_ (.,6(})) = $c[1-2¢(2)] < 0 . Note that by the definition of v,
the principal eigenvalue of the operator on the left hand side with Neumann
boundary conditions is zero. Hence with Dirichlet boundary conditions it is
positive, which implies that z <0 on (0,1) , from which the result follows.

This completes the proof of the Theorem 4.

Since v'(X) <0 for all X >0 if € = 0 , one would expect that
xi,xz +® as ¢ -+ 0 . We shall show that this is indeed true. Define

X? - sup{x>o|v‘ <0 on [0,1)} .

Clearly X? will depend on ¢, Thus, we shall write X?(c) .

-15-
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THEOREM 5. A?(c) +o g8 €+ 0.
PROOF. Suppose to the contrary that there exist a sequence {CQ} ' €, 0
1

as n+* and a constant M such that A?(en) <M, for all n 2

Then there is.a subsequence, still dcnoted by {cn} , and X >0 such that
. -
M )+ 2 as ¢ +0.

Since v, depends continuously on (A,e),v,(x?(en)) =0 forall n21,

and therefore, by (3.4)

1 .
(1,60 ) b (3,0) = te, [ 00200003 b O ax
0

where we have written An = X*(en) . Hence

1
1 1 1
If(1,¢(kn)(1))h1(xn)(1)| s 3e_ I 1 O dax s ge_ -
0

By using the continuity of ¢(A)(1) and h1(1)(1) we get by taking the limit

as n -+ ®:
f(1.¢(i><1)) b, K)(1) =0 .
But ¢(\) € (0,4) and because a(1) € (0,4), £(1,6(X)(1)) # 0 . Since

h;(i)(1) = 0 , we have h1(i)(1) # 0 . Therefore we have a contradiction. This

completes the proof of Theorem 5.
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REMARKS. 1) If we define X; a inf{k?0|v1(k)>0} , then 0 < X? < k; < o and

vl(X?) = v1(lg) = 0 . Since v, 1is analytic in ) there are at most finitely

1

1 in the interval [x*,xg] , and there is at least one zero

.f where vy changes sign. We denote by A the first zero of v, where v,

sign.. It follows as in [7], that (X,¢6(X)) is a bifurcation point from which

F many zeros of v

changes

. "emanates" a continuum of 'nonsymmetric" solutions.
2) We are unable to prove that %%(i) < 0 which would imply the transervality

condition needed for the theorem of bifurcation from simple eigenvalue. Since

n
v is analytic we only know that there exists an m € N such that EX;(X) =0

d\,2m+1 dx
for ns2m and ——, () >0 .

2m+1

da
3)Concerning the nonsymmetric case, we just mention the following result which
suggest that the branch of stable solutions becomes disconnected from

C when h#0.

PROPOSITION 6. There i8 no & > O such that there exists a C1 function
wi [=6,8) x (A-6,)+8) » Cz([-1.1]) which satisfies
i) w(0,2) = C(A) 1 € (X-6,1+8)

ii) w(h,)) <& a solution of Problem (P) for each h € (-§,68) .

" PROOF. If such a § would exist, then z = %%(O,X) would satisfy the

equation:

(E)

{ -z" - ifu(..¢(i)2h=0)z =% (%) (1-4 (V)
z2'(-1) =2'(1) =0 .

this is obtained by diflferentiating (P) with respect to h , at h=0.

:
;‘

But at  (%,¢(2)) , theprincipal eigenvalue v1(k) vanishes and the corresponding

.-IA

¥ 1w
0
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eigenfunction h, does not change sign. Thus f i¢(1-¢)h1dx ¥ 0 which

1
-1 +1
contradicts the necessaryorthogonality condition f i¢(1-¢)h1dx = 0 in order
_1 .

to have existence of a solution 2z . This complctes the proof of the proposition.

Note that

du

(3.5) 5 A,h=0 }(x) > 0 x € [-1,1] ,

X <2 <X (next zero of vi(.) s possibly + ) and there is § > 0 such that
(3.6) %;T:(A,h-o)(x) <0 x€[-1,1] ,X=-8<r<k .

The existence of %%(A,.) € Cz[-1,1] follows from the implicit function
theorem and z = %% satisfies (E) for 1\ € (1-61,i) U (i,i) for some

8, > 0 . Since the right-hand side of (E) is positive, and the operator

on the left-hand side is coercive (v1>0) for X € (X,i) , (3.5) follows.

The inequality (3.6) is a consequence of the antimaximum principle [2].

4. AN EXAMPLE IN WHICH f£(.,u) IS PIECEWISE LINEAR

In this section we shall assume that f£(x,u) has the following form

-u 0SS u<a(x)
f(x,u) := { 0 u = a(x)

t=u  a(x) <us 1 ’
where

(4. 1) a(x) := }(1-ex+h) 0<e <1, Ihl <min{e,t-¢€}.

-18-
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Thus f is not continuous in u but it still has the properties

LRFCIDCIN A et

£(x,0) = £(x,1) = 0
f(x,u) <0 for x € (-1,1) , 0 < u < a(x)
£(x,u) >0 for x € (-1,1) , a(x) <u<1 . |

We consider the problem:

Find (A,u) € R x W2*®(-1,1) such that

- -u" = Af(.,u) , u' >0 on (~1,1)
(P) q
v u'(-1) = u'(+1) =0 .

Thus, u satisfies

(4.2a) -u" = =)\u if u(x) < a(x)

(4.2b) -u" = A(1~y) if u(x) > a(x) .

Because u 1is increasing and a is decreasing there exist a unique

£ € (-1,1) such that u(x) < a(x) on [-1,f) and u(x) > a(x) on (£,1] .

Thus by (4.2a,b) and the boundary conditions

o ux) =a cosh VA(x+{) if -1sxs¢E
r

u(x) = 1 - B cosh WMA(x~1) if Etsxs 1,

where o,8 € R,

. s e - K .
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:‘ Since u € C1([-1,l]) we must impose at x = £ the conditions

(4.3a) o cosh VA(E+1) = 1 -8 coshV%(&-!) = a(k)

(4.3b) a VA sinh VA(g+1) = - g8 VA sinh WA (E-1) .

Using the definition of a(&) , and eliminating a and 8 , we obtain
(4.4) (1+h-€g) tanh VA(g+1) + (1-h+ef) tanh VA(E-1) = 0 .

This leads to

(4.5) sinh 2VA £ = (eZ-h)sinh 2WA

or, when we introduce the function,

sin ht

: . if t#0
o(t) := {
1 if t=0,
to
(4.6) EO(2VAE) = (e&-h)o(2W)) .
I. THE SYMMETRIC CASE (h=0)
Equation (4.6) now reduces to.
(4.7) g{@(Zv&g)-so(ZVR)} =0,

20~
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Plainly, € = 0 is a solution for all X > O . The corresponding values of a

Ao e TN

and B can be computed from (4.3a). They are

%L~ PO

3 a=8=1/(2 coshW)
i Thus, there exists a continuous branch of symmetric solutions.

Other solutions of (4.7) must satisfy

¢ (2V) £)

vy ¢

(4.8) P(A,g) HE

where we have divided (4.7) by £®(2VA) . Because P has the properties

(i) PQO,t) = P(A,-t) for all t £ R;

¥ (ii) P(2,0) = 1/6(2V) ;
% (iii) £ 320,8) > 0 for all t € B~ {0}
it follows that (4.8) has exactly two solutions # E(\,e) if and only if

e > 1/8(2V)) , i.e. when X > ko(e) where O(Zﬁo(é)) = 1/e .

m POE)

;.
i o

/!

MO T

Fig. 1 The case X > )0
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The corresponding vaiues of a and ‘B can again be determined from (4.3a).
Thus, summarizing we have found

1. For each A >0, thefe exists exactly one symmetric solution, characterized

94 by £€=0.

- 2. For 1> xo(e) there exist exactly three solutions: the symmetric one

(¢=0) and two non-symmetric ones characterized by £ = -t E(A) . It is readily

seen from Fig. 1 that

0 as ¢ =+ 1
A (e) » {
0 « as €+ 0 .

II. THE ASYMMETRIC CASE (h#0)
1t follows from (4.5) that £ = 0 implies X = 0 . Thus when A > 0 , we

may divide by & , and solutions must satisfy the equation
h
(4.9) P(A,E) = ¢ - E -

We consider the case h > 0 .,
One verifies that for each A > 0 , the function £ + P(g,)) is strictly
convex and even. Thus P(0,)\) = 1/6(2VQ) 1is the minimum of P(E,)\) .

The function £ -+ € -~ (h/E) is strictly increasing for § € [-1,0) U (0,1] .

Since by (4.1)

€ + h < P(-1,)) = 1

IR i + SRR TR

and

—re
e

lim e~ 25> peo,0) = 1/6(2W0)

£10 ¢

NN e .

-22-

'''''''''''

»

o . T ' L L (O ~ - N v B - . PO N N . N
L A TP I I R R TP TR, I, T, W W WY WY DO Uy Ny o Ty ¥ e e S SR W . W WA AT WL




Yy v
a. BPMIN

. ...a . .
.

‘

.

there exists for each 2 >0 and h € (0,1-¢) exactly one solution

T T . TV T '7'
I

E,(X,h) € [-1,0) of equation (4.9). Since

) h P h
'a_E [P(E.)‘) 5+J ag(gox) 62 <0 for £ < 0
the implicit function theorem implies that 51 as a function of ) 1is smooth
and strictly decreasing.
For £ € (0,1] , both the left-hand side and the right-hand side of (4.9)
are increasing in § , but & » P(E,)\) is strictly convex and & + € - (h/E)

is strictly concave. Moreover, we have

lim PCE,)) = 1/6(2W\) > lim (e- !é‘)
£40 E+0

and

P(1,)) =1>ec-h by (4.1).

Thus equation (4.9) has zero, one or two solutions.

Observe that P as a function of ) is strictly increasing, because

Zpe = 45 pen {rvin-row)

1
By F'(t) = ¢'2(¢¢'+to¢"+to'2) =
ﬁ - ;(:§)‘2 (sinh 2c-2t) >0 for .t >0,
-
=23~
'l
Ve e e e e
Tl

where F(t) = to'(t)/¢(t) and
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Zi For X < Xo(e) there is no solution since

N inf P(,\) > € > ¢ = h= sup, (a-%).
L‘ £€(0,1) £F(0,1]
B

Because P(E,\) 0 as X+« and & € (0,1) fixed, there exist two solutions
of (4.9) for A large. Remembering that 9P(£,.)/3X < 0 we conclude that
there exists a Xk € (ko,”) such that there exists no solution of (4.8)

if X < A% , exactly one of X = A* and exactly two of X > A* . Since

9 h 9
> [P(E.X)'UE] = P(g,2) <0

these solutions can be smoothly parametrized by & € (0,1) .

hE o
/
hWie |-

R S
° \i‘ ')\" 4).

-q fm———— Smme—

L - -

P A e

;‘ Fig. 2 The bifurcation diagram (h>0)
-

For h < 0 the situation is entirely analogous. This case can be reduced

to the former by substituting h » -h and £ + - in (4.9).
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APPENDIX A

In this Appendix we state and prove a version of a global function theorem which

was used in section 2. This variant is a slight extension of Theorem 6.2 of [9].

For the sake of completeness we give a oroof here.

THEOREM A. Let E be a real Banach space and let F: Rx E + E satisfy

a) F(0,0) =0

b) F <& continuous

¢) G: Rx E+E defined by GQA,w) =w - F(A,w) maps bounded subsets of
Rx E into relatively compact subsets of E.

d) F possess a partial Fréchet derivative with respect to w at (0,0) :
dF_(0,0) and dF_(0,0) & Isom(E,E) .

e) If J denotes the set of solutions of
(1) F(A,w) =0 in RXxE

and if D denotes the maximal connected subset of J which contains (0,0) ,

then
D N ({0}xE) = (0,0) .

. . + . -
Then D s unbounded in R X E and in R x E.

;-f £) If morcover F € C1(R’E;E) s then there exists 6 >0, )\o >0 and a

c! function X -+ z(1) £ E such that (A,u) € J and |A| > A

L

-
LN

o.llull<6,

imply uw= z(A) . The function z is C (resp. analytic) vhenever F <is

Tl

c" (resp. analytic).

r‘ .

I

!,

[ X

i:.

—

L

i

.u' =25~
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"'i PROOF. 1f the conclusion of the theorem does not hold, then either

. ¢ = Cn (R*E) or C :=CN (RXE) is bounded. Assume C' bounded.

It follows from b) and c¢) that c* is a compact metric space under the induced
topology from R'x E . It follows from d) that (0,0) 1is an isolated solution
of (1) in {0} x E . Since ¢t ’is compact it follows from e) that there
exists a d—neighbourhood of ct in IR x E denoted by U such

Un ({0J0E) N J = (0,0) . Let K.:= UNJ where U denotes the closure of U
in Rx E . Since !! is bounded, U is bounded and thus UNnJ is totally
bounded. U and J are closed, thus K 1is compact metric. By construction
WNC =¢. Hence by [9], there exist disjoint compact subsets

ABCK suchthat CC cA, 3 NJcB and K=AUB.Let 0 bea
p-neighbouflxood of A vwhere p is less than the distance from A to B

and less than the distance from A to 3'! . Note that tﬁese distances

are positive since. A is compact and B, 93U are closed, AN B =@ and

AN3 =0 .Hence C'c@, 30 NJ =@ 0 is bounded and O N ({O}xE) = (0,0) ,

0n ((A}xE) = $ for )\ large enough. Define O, := {u€EI (A,u)€0} . From

b) and ¢), it follows that the Leray-Schauder degree of F 1is well-defined on
OA: d(F,OA) . For A large enough, d(F,OX) = 0 since Ox =@ . For A =20 w
d(F,0,) = index(F(0,.),0) = index(dF,(0,0),0) # 0 since dF,(0,0) € Isom(E,E) .
But this contradicts the homotopy-invariance of the Leray-Schauder degree (see
Lemma 1.8 of [9]). Thus ¢* is unbounded in R'x E . Similarly C -is

unbounded in R X E .

DINEE & aigh pL B pe ooty v Ty

The last assertion follows directly from the local implicit function theorem.
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APPENDIX B

E! The aim of this Appendix is to prove that stable stationary solutions of (D)
are increasing when & 1is nonincreasing. This generalizes an earlier result
of Chafee [1] . It is known that if (\,u) is a stable stationary solution

of (D), then the principal eigenvalue v, of - (EVN)

;j “h" - £ (.,u)h = vh
(EvN) { u
h'(-1) = h'(1) = 0

is nonnegative. Thus the principal eigenvalue of (EVD)

-h" - £ (.,u)h = v_h
(EVD) { u D
h(-1) = h(1) = 0

ov, 20,

is strictly positive: “D,l ]

PROPOSITION. Let a satisfy Al,A2 and let

A3’ a'(x) so x« [-1,1] .

Let (A\,u) be a stable solution of (P) satisfying 0 s u(x) st , x € [-1;1] ,
A >0 . Then either u <ig identically constant, us 0 , us 1 or, when a
i8 not a constant, u is strietly increasing.

PROOF. v = u' satisflies

{ -Vt = A Gaudv = AE = Au(i-u)(=a') ¢ 0
Lv¢-y =v() ~ 0.




Since VD,! > 0 , the operator on thg left-hand sidec is coercive. If u 1is not
a constant, then it follows from the maximum principle that 0 < u(x) < 1,

x € [~1,1) and thus the right-hand side is nonnegative (tO)..Then

u'(x) =v(x) >0 on (-t,1) . If u is a constant it can only be a trivial

solution if a is not a constant, and,if a 1is a constant, and u = a , it is

easily seen to be unstable.

-28~
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